我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

抽象的

Significance of Transcription Factors in Drought Stress Tolerance of Cereal Crops

Melaku Tesfa

Drought being a production restrictive factor has become the main threat to international food security. Therefore, understanding the mechanisms underlying the drought response is one of the main scientific agenda for enhancing crop yield. Plants set out different strategies and mechanisms to respond to and tolerate drought stress. The expression of several genes is changed in different plants under drought stress that helps them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a key role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the chief regulator of gene expression play a vital role in stress response. ABA regulates the expression of the majority of the target genes through the ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs comprises a regulon termed as AREB/ABF regulon. In addition to this, drought-responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element-binding protein (DREB), and NAC regulons play a crucial role by regulating numerous drought-responsive genes. Apart from these key regulons, MYB/MYC, and WRKY, transcription factors family also contributes to drought response and tolerance. Our insight into the transcriptional regulation of drought is still developing. Current findings have suggested the presence of crosstalk between diverse transcription factors functioning under drought stress. In this manuscript, I have reviewed the role of different regulons functioning under drought stress and their crosstalk with each other.