国际标准期刊号: 2168-9652

生物化学与生理学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Targeting Demalication and Deacetification Methods: The Role of Carboxylic Acids Transporters

Alice Vilela

As weak organic acids, carboxylic acids partially dissociate in aqueous systems, like wine, establishing equilibrium between uncharged molecules (undissociated form) and their anionic form, according to the medium pH and their pKa. This property influences yeasts cell-behaviour, particularly the mechanisms by which the molecules can cross biological membranes. Occasionally wines may present an excessive amount of organic acids. In the mouth they will seem unbalanced and sometimes excessive sourness diminishes their quality. Moreover, these acids originated from grapes or from the fermentation process itself, negatively affect wine yeasts, yeast fermentation process and the final wine quality. Two of those acids are L-malic acid and acetic acid. The first one affects the wine mainly in his tastiness, making it much to sour; the second one, being a volatile compound, besides the excessive sourness, also imprints the wine with an unpleasant vinegar flavour. One approach to solving this problem is biological deacidification by Saccharomyces and non-Saccharomyces wine yeasts. To these biological processes of wine acidity bio-reduction we can call wine bio-demalication (malic acid bio-degradation) and wine biodeacetification (acetic acid consumption by yeasts).

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。