国际标准期刊号: 2168-9652

生物化学与生理学:开放获取

开放获取

我们集团组织了 3000 多个全球系列会议 每年在美国、欧洲和美国举办的活动亚洲得到 1000 多个科学协会的支持 并出版了 700+ 开放获取期刊包含超过50000名知名人士、知名科学家担任编委会成员。

开放获取期刊获得更多读者和引用
700 种期刊 15,000,000 名读者 每份期刊 获得 25,000 多名读者

索引于
  • CAS 来源索引 (CASSI)
  • 哥白尼索引
  • 谷歌学术
  • 夏尔巴·罗密欧
  • 打开 J 门
  • Genamics 期刊搜索
  • 学术钥匙
  • 期刊目录
  • 乌尔里希的期刊目录
  • 电子期刊图书馆
  • 参考搜索
  • 哈姆达大学
  • 亚利桑那州EBSCO
  • OCLC-世界猫
  • 学者指导
  • SWB 在线目录
  • 虚拟生物学图书馆 (vifabio)
  • 普布隆斯
  • 欧洲酒吧
  • ICMJE
分享此页面

抽象的

Variety of Neuronal Pathways to Achieve the Same Hypoxic Preconditioning Effect

Elena I Zakharova* and Alexander M Dudchenko

The relevance of hypoxic preconditioning is due to its ability to increase the body's resistance to hypoxic/ischemic stress. A single session of moderate hypoxia eliminates the differences in endurance under severe hypoxia in intact rats and those pre-tested under severe hypoxia with high and low innate resistance to it. In these rat groups, the same preconditioning effect is achieved by different synaptic plastic tools (biochemical data). Thus, the synaptic mechanisms of preconditioning are dependent on the prior hypoxic experience. This conclusion confirmed our pharmacological experiments. Antagonists of alpha7 and non-alpha7 subtypes of the nicotinic receptors methyllycaconitine and mecamylamine in single IP injections selectively influenced the resistance to hypoxia of the low-resistant rats and were ineffective against the high-resistant and intact rats. Moreover, in the low-resistant rats, both drugs had ambiguous effects on the resistance to hypoxia after the preconditioning and without it. Based on the data, we substantiated in our review that the following cholinergic neuronal populations and networks were involved in mechanisms of the hypoxic preconditioning: 1) In the high-resistant rats, cholinergic projections from the pedunculopontine and/or laterodorsal tegmental nuclei into the nuclei of the ventrolateral medulla of the medulla oblongata as well as into the subcortical forebrain nuclei and, linked with them, cholinergic projections from these forebrain nuclei into the cortex. 2) In the low-resistant rats, cholinergic C-fibres into the nucleus tractus solitary of the medulla oblongata and influences of unidentified cholinergic neurons through the alpha7 nicotinic receptors in the caudal brainstem areas outside the nucleus tractus solitary. 3) In intact rats, cortical cholinergic interneurons and unidentified cholinergic neurons of the brainstem structures. In conclusion, the variety of neuronal pathways to put off apnea indicates a great adaptive potential of brain, and the specific mechanisms of its realization may be a promising therapeutic targets.